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Abstract. Networked embedded systems are highly 
distributed systems with limited resources and 
communication capabilities tightly coupled to 
physical processes with sensors and actuators. These 
constraints do not allow the deployment of existing 
heavyweight middleware layers to support the 
distributed control algorithms in the different 
application domains of these systems. The paper 
describes a simulation framework that enables the 
timing accurate simulation of these systems including 
the physical system, the computing nodes and the 
communication network. The tool serves two distinct 
purposes by 1) allowing experimentation with 
different application domains and distributed control 
algorithms in the presence of communication delays, 
clock drift and faults and 2) providing a platform for 
distributed middleware research. 
 
Introduction 
 
Networked Embedded Systems (NEST) constitute a 
new category of systems that necessitate the 
development and application of novel systems and 
software engineering techniques. These systems are 
tightly coupled to physical processes, and distributed 
across a relatively large number of processing nodes 
often having limited resources and communication 
capabilities. Each node has one or more sensors and 
actuators directly attached to it that interacts with the 
physical process at the node's location. 
 
As an example for a NEST application, consider the 
problem of active control of aircraft interior noise. 
Aircraft interior noise is a result of two primary 
sources: engine noise and turbulent boundary layer 
noise.  Engine noise, which itself originates from 
engine vibration, combustion and turbulent engine 
flow, is transmitted to the aircraft cabin through the 
airframe.  Turbulent boundary layer noise, which 
consists of stochastically varying acoustic pressures 
acting over the entire aircraft exterior, enters the 
cabin by being transmitted through the aircraft 
fuselage [4].  In each case, there is a bottleneck in the 
path by which acoustic energy enters the cabin; this is 
in the fuselage panels. 
 
 

 
Active noise control is the reduction of unwanted 
sound through the use of “active” sources such as 
loud speakers or vibrational excitation.  Some type of 
sensor, such as an accelerometer or microphone, 
measures the unwanted sound.  A controller is 
implemented, typically via a digital signal processor, 
which takes the sensor signals and uses them to 
calculate an optimal control signal.  This control 
signal is used to drive the active source resulting in 
the cancellation of the unwanted noise.  In an aircraft 
interior noise control application, the sensors would 
be a combination of microphones to measure the 
interior noise and vibration sensors to measure the 
aircraft fuselage vibration.   
 
Previous investigations [5-6] produced promising 
results, having reduced the transmitted acoustic 
energy by an order of magnitude.  However there are 
some hurdles to be overcome before a practical, 
large-scale implementation can be realized.  First, 
while transmission control on single panels has met 
with great success, the idea of configuring all 
fuselage panels with the appropriate sensors and 
actuators for control is rather daunting.  Perhaps the 
greatest hurdle in this regard is the need for 
communications between the sensors, actuators and a 
centralized controller.  The weight of the wires alone 
is enough to prohibit the application on an aircraft.  
Thus, a decentralized control scheme is more 
appealing wherein each panel has an independent 
controller with its own set of sensors and actuators 
and only communicates with neighboring controllers.   
 
Large-scale active noise control is only one possible 
application of NEST technology. Other domains 
include active flow control, micro-satellite 
constellations, autonomous vehicles, smart civil 
structures, and cooperative robotics.  The common 
characteristics of these applications introduce very 
specific constraints on the solution. There needs to be 
a large number of resource-limited computing nodes. 
Resource limitations include, for instance, limits on 
CPU performance, memory size, available power, 
and others. Communication between nodes is limited 
in terms of bandwidth and connection topology. In 
the most restrictive situation, nodes may be able to 
communicate with their immediate neighbors only. 



The computing nodes and communication links are 
unreliable. Node failures must be detected and 
application-specific reconfiguration must be 
performed to compensate for the loss. 
  
The highly distributed nature of computing in a 
NEST application implies that each node should be 
equipped with sophisticated middleware —a kind of 
distributed operating system that provides global 
services for the applications (in addition to the local 
operating system that supports local resource 
management). This middleware layer is a key 
ingredient of NEST applications: it encapsulates 
services that are reusable across a number of specific 
problems, yet independent of the underlying 
hardware infrastructure (which is managed by the 
local OS). 
  
The middleware is expected to support various 
coordination services beyond basic communication 
protocols. Coordination services range from simple 
event- and time-based coordination to complex 
algorithms for leader election, spanning tree 
formation, protocols for distributed consensus and 
mutual exclusion, distributed transactions, group 
communication services, clock synchronization and 
others [7]. These services go beyond the usual 
capabilities provided by networking protocols. 
Additionally, because of the inherent unreliability of 
the nodes and communication links, aspects of fault 
tolerance must also be addressed by the middleware.  
 
Because of resource limitations, a complex, 
monolithic middleware layer that contains all 
services for all applications is not feasible. The 
middleware layer for NEST applications needs to be 
thin, application-specific and high-performance. 
Developing the technology to support these 
requirements is our current research focus. However, 
what we quickly realized is that there is no readily 
available platform to experiment with NEST 
applications and middleware. Therefore, we 
developed a modular configurable simulation 
environment, called the Simple NEST Application 
Simulator (SIESTA) that enables the experimentation 
with different distributed control applications and 
middleware technology. 
 
The next section describes the architecture and 
unique characteristics of SIESTA. The middleware 
layer is discussed in a separate section. Finally, an 
application example is detailed, the structural 

damping of a vibrating beam. Preliminary results are 
also presented on how message delay affects the 
control quality in this particular application. 
 
SIESTA 
 
The Simple NEST Application Simulator (SIESTA) 
provides a simple abstract platform for 
experimentation with typical NEST applications such 
as active vibration control.  It has a modular, layered 
architecture, so that the physical system simulator, 
the simulator of the distributed computing platform 
including the communication network, the actual 
middleware layer and the control application are all 
pluggable components. As illustrated in Figure 1, 
component interface with each other through well-
defined, simple APIs. 
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Figure 1: SIESTA Architecture 

 
Because of its modular architecture and pluggable 
components, SIESTA is in fact a family of 
simulators. In the remainder of this paper we refer to 
one specific instance of it that simulates the structural 
damping of a vibrating beam. The last section of this 
paper describes the application and preliminary 
simulation results in detail. 

Physical System Simulation 
At the bottom of the architecture is the physical 
system simulator. It’s API is extremely simple: 
 
double sense(int sensor_id); 
void actuate(int actuator_id, double value); 
 
This allows a high degree of flexibility in plugging in 
external physical system simulators. Even existing 
third party tools can be interfaced with using a small 
adaptation layer.  



 
Figure 2: Siesta Configuration 

 
The biggest constraint in interfacing, however, is that 
SIESTA uses a synchronous model, i.e. the different 
simulator modules need to work in lockstep. That’s 
why the API does not contain timestamps or any 
other indication of time. The SIESTA scheduler 
keeps track of global time (the individual 
computational node simulators keep track of their 
own local time). It is the task of the scheduler to 
make sure that the whole system is simulated in a 
timing accurate manner. 
 
The simulation of the vibrating beam is done using a 
state-space model. It is implemented as a Java 
component running in its own thread. Details will be 
provided in the last section. 

Hardware Component 
The heart of SIESTA is the Hardware component. Its 
tasks include 1) simulating the individual NEST 
nodes and the local operating system by providing an 
isolated environment for the application code to run 
in and 2) simulating the whole network by providing 
point-to-point communication capability between 
neighboring nodes using dedicated communication. 
The network size and topology, as well as sensor and 
actuator allocation, are configurable from graphical 
models. 
Figure 2 shows the graphical configuration tool of 
Siesta. It is based on the Generic Modeling 
Environment [3]. The small window in the top right 
corner shows the model of a single node. It contains a 
sensor and an actuator. Each of them has a unique 

identifier as a textual attribute. The network is 
modeled as a two-layer hierarchy to simplify the 
models. Each subsystem called Sub10 contains ten 
nodes connected in a linear array. Some of the node 
interfaces are exposed to the outside world via ports. 
The top window called System50 shows the entire 
network consisting of ten subsystems connected so 
that they form a linear array with three additional 
links to decrease the diameter of the network. The 
basic linear topology is a good fit of the problem 
since the model of the beam is one-dimensional. 
 
The graphical models are used to automatically 
generate a Java class containing all the necessary 
configuration information for Siesta. 

Timing Accurate Simulation 
SIESTA is not a real-time simulator, in fact, it will 
run orders of magnitude slower than the real system. 
(It is called SIESTA for a reason.) Two reasons for 
this are that it is a single processor application 
simulating hundreds of NEST processors and it is 
implemented in Java for simplicity and portability. 
However, the single most significant contributing 
factor is the requirement to simulate “logical” timing 
as accurately as possible. How is this accomplished? 
 
In SIESTA, every NEST node has its own Java 
thread. An internal scheduler gives each of the nodes 
an N-millisecond timeslice in a round robin fashion. 
1 millisecond is the absolute minimum that can be 
scheduled somewhat reliably in Java (depending on 



the JVM). It is assumed that this represents only T 
microseconds of real-time because the current control 
applications need to run control loops in the KHz 
range. To simulate the effects of clock drift on the 
quality of the control, the physical system simulator 
needs to be run at an even higher rate. However, if 
the application code does not have anything to do in 
the given timeslice, as it is the case most of the time, 
the middleware engine of the given node executes a 
number of “steps” (e.g. message routing operations) 
between a predefined minimum and maximum 
number and then the node yields the processor. This 
ensures that 1) idle nodes do not waste CPU cycles 2) 
the middleware always advances even if the host OS 
(e.g. Windows) takes away the CPU and the timeslice 
expires for the current node by the time SIESTA gets 
back the control. Note that the scheduler is a 
pluggable component itself. In fact, we currently 
have three different schedulers available in Siesta. 
 
Since each simulated node keeps track of its own 
local time, it is fairly easy to introduce asynchronous 
clocks and hence, clock drift, making 
experimentation with different clock synchronization 
algorithms possible. Also, communication links can 
insert a configurable explicit time delay before 
message delivery. This delay can depend on the 
simulated hardware capabilities, network traffic, and 
other factors, or include a random component. We 
are planning to include fault injection capabilities to 
SIESTA in the near future to allow experimentation 
with different classes of faults, including different 
node, link, sensor, and actuator failures. 
 
The hardware (and local operating system) API is 
also very simple: 
 
int getNodeID(); 
double sense(int sensor_index); 
void actuate(int actuator_index, double value); 
int numberOfChannels(); 
void sendMessage(int channel, Object message); 
Object receiveMessage(int channel); 
 
It allows the application program and/or middleware 
to access the unique id of the hardware node it is 
running on and provides access to the sensor(s) and 
actuator(s) connected to the current node. Notice that 
it no longer the globally unique identifier of sensors 
and actuators that is used by the physical system 
simulator that is needed here, only a local one. 
Finally, the API assumes a simple message passing 
communication protocol allowing direct 
communication with neighboring nodes. The number 
of neighbors can also be accessed. 

Middleware 
 
The middleware layer of Siesta is a pluggable 
component, which allows different middleware 
frameworks to experiment with. The set of 
implemented services in each of the frameworks is 
not fixed either; it depends solely on the needs of the 
application. Currently, we are experimenting with 
two middleware technologies. The one used in our 
beam experiment is based on the asynchronous input 
output automata model as described in the 
“Distributed Algorithms” text by Nancy Lynch [7]. 
The other provides an event driven environment that 
is modeled after TinyOS [9]. There is extensive 
literature on both middleware technologies. 

I/O automaton 
Using the well-developed methodology of 
asynchronous I/O automaton we gain immediate 
access to a wealth of published and verified 
distributed algorithms. To facilitate the rapid 
implementation of these algorithms we designed our 
middleware engine around a core set of classes that 
closely resemble the basic concepts and notions used 
by the distributed algorithms community (see Figure 
3). 
  

 

 
Figure 3. I/O Automaton implementation 

 
IOAutomata is a base class that each middleware 
service needs to extend by defining member variables 
to hold state information, and by adding embedded 
classes to hold code fragments that describe state 
transitions. There are two types of state transitions: 
local (initiated by this service) and input (initiated 
from outside), which correspond to classes 
LocalTransition and InputTransition, respectively. A 



LocalTransition is called enabled if the described 
state transition is possible or desirable in the current 
state of the automaton. The model has a very simple 
way of composing several automata into a single 
automaton by passing the “output” of one automaton 
to the “input” of  (perhaps several) others, where the 
“output” is a list of parameters encapsulated in the 
class Action. Thus the middleware component is a 
single IOAutomata that is composed of several 
IOAutomata implementing different services, by 
merging all LocalTransitions and all 
InputTransitions. A single invocation (or step) of the 
IOAutomata starts by selecting an enabled 
LocalTransition randomly and letting it create an 
Action. Then all InputTransitions are selected and 
executed whose signature matches the created 
Action. Each step is executed atomically, and the 
IOAutomata needs to be invoked periodically. The 
ActionTemplate is a helper class that specifies the 
signature of the Action a LocalTransition creates and 
an InputTransition executes. An ActionTemplate has 
a set of parameters some of which can be null 
specifying a wildcard. This parameter list can also 
include an unlimited number of wildcards at the end 
of the list (tail). 
 
For example, the Broadcast middleware service has a 
SendMessage LocalTransition with the following 
ActionTemplate parameter list: "send", null, 
"broadcast", "message" and a tail. When creating a 
specific Action, the second parameter will hold an 
integer, the channel number, while the tail contains 
the message.  The created Action will be matched by 
the Send InputTransition of the Channel IOAutomata 
whose ActionTemplate parameter list is: "send", null 
and a tail. The execution of this InputTransition will 
cause a call to the underlying simulated hardware 
channel send primitive (OS service). Similarly, the 
Channel Receive LocalTransition generates an 
Action that will be matched by the Broadcast 
ReceiveMessage InputTransition (on the node at the 
other end of the hardware channel). Notice how the 
Action matching technique supports the composition 
of different I/O automata. The calling graph for each 
LocalTransition can be computed form the 
ActionTemplates before the simulation starts.  
  
Our representation of the basic concepts of I/O 
automata might seem unnatural at first, but in fact it 
is almost the only choice. For example, in an 
execution environment actions cannot be classified to 
input, output and internal actions, because the same 
action can participate as an input action of one 

automaton, an output action of another automaton, 
and an internal action of the composition of the two 
automata. Similarly, one cannot separate output and 
internal transitions, which is why we used the term 
local transitions. Moreover, after analyzing the rules 
of composition, we can observe that no action can be 
matched by more than one local transition. This is 
why we can say that the local transition “creates” the 
action, while input transitions “execute” it. 

TinyOS programming model 
TinyOS [9] is an event based operating environment 
designed for use with embedded networked systems. 
It is designed to support the concurrency intensive 
operations required in such systems with minimal 
hardware requirements [8]. TinyOS mandates its own 
programming model on how components are written. 
It presents three abstractions: events, commands and 
tasks. The application is composed of a hierarchical 
set of components by wiring the events and 
commands to their handlers. Events represent 
function calls; they are executed synchronously. It is 
critical that events be as short as possible, although 
their execution might involve posting tasks. Tasks 
represent asynchronous, longer-running 
computations. Commands are very similar to events, 
except for their restriction on the calling graphs. 
Commands can only call lower level commands, 
while events can fire higher-level events and call 
lower level commands. Events are often the result of 
hardware interrupts, and they can preempt tasks. 
 
The middleware framework developed for Siesta 
does not emulate any of the hardware or system 
components of TinyOS. It merely allows the 
development of middleware services using the 
programming and composition methodology of 
TinyOS.  We have the following set of core classes 
(see Figure 4).  

 
Figure 4. The implementation of the TinyOS 

methodology 
 



In our current implementation we replace all 
commands with events and put no restriction on the 
calling graphs of events. Component is a base class 
that each middleware service needs to extend by 
defining member variables to hold state information, 
and by adding embedded classes to hold code 
fragments that describe commands, events and tasks. 
The embedded classes must be derived from Event or 
Task. Signals are implemented by declaring member 
variables of type Signal. Signals maintain a list of 
Events that must be called when the Signal is fired by 
Tasks and Events. Parameters passed between Events 
and Signals are encapsulated in the class Action. The 
Component maintains a list of posted Tasks that it 
executes one at a time. 
 
For example, the Broadcast middleware service has a 
ReceiveMessage Event which calls the SendMessage 
Signal with the following Action parameter list: 
channel number and message. The SendMessage 
Signal is wired to the SendMessage Event of the 
Channel middleware service. The execution of this 
Event will cause a call to the underlying simulated 
hardware channel send primitive (OS service). On the 
node at the other end of the hardware channel the 
ReceiveMessage Event is executed by a simulated 
hardware interrupt, which saves the message and 
posts the ProcessMessage Task. When the 
ProcessMessage Task executes, it calls the 
DeliverMessage Signal, which is wired to the 
ReceiveMessage Event of Broadcast. Notice how the 
calling graphs are broken by posting Tasks and by the 
simulation of the hardware layer. 
 
Example Application 
 
The physical system under consideration is a simply 
supported beam subject to a random, point force 
disturbance.  The beam is also subjected to the 
control inputs of each node and the response is 
measured at each node by a point velocity sensor.  
The beam dynamics are modeled using Galerkin's 
technique to discretize the partial differential 
equations.  The result is a set of simultaneous 
ordinary differential equations of the form: 
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where Mk and Kk are the modal mass and stiffness, qk  
is the displacement of the kth mode, Qn are the 

control generalized forces and Qd is the disturbance 
generalized force.  In this case, the system was 
configured with 50 nodes distributed evenly along the 
length of the beam.  For convenience in simulation, 
this set of equations was cast in discrete time, state 
variable form as follows [1]: 
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where k is the time step, x is the state vector 
containing the beam mode displacements, qk(t) and 
their derivatives, u is a vector of the control and 
disturbance forces, fn and fd, and y is the beam 
vibration velocity at node. 
 
Although this paper focuses on the beam system 
described above, any system that can be cast in state 
variable form can be incorporated into SIESTA 
without any code modification.  As an example, a 
physical model of a launch vehicle payload fairing 
has already been incorporated into one version of 
SIESTA. 

Control Architecture Design 
The decentralized control architecture employed here 
is referred to as a horizontal hierarchy.  A horizontal 
hierarchy is one that consists of only a single layer of 
nodes that communicate only with neighboring nodes 
as shown in Figure 5.  The degree of information 
sharing among nodes is defined by the “reach” of the 
system. A node that has a reach of R will have access 
to 2R+1 sensors; R sensors to the left, R sensors to 
the right in addition to its own sensor. Nodes located 
near the edge of the domain will simply have non-
existent sensors omitted. Each node then creates a 
single control output based on the available sensor 
signals. This output is used to command the actuator 
associated with that node. 

 
Each node employs a simple control law of the form 
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In words, each node produces a control force that 
equals the weighted sum of all available sensor 
signals.  The weight applied to each sensor signal, ai, 
was determined from a well-established LQR, 
optimal output feedback algorithm [2]. 
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Figure 5 Schematic of the decentralized control architecture 

 

Physical System Simulation 
In order to allow SIESTA to simulate clock drift 
among nodes, it was necessary to permit different 
nodes to send their control signals to the beam at 
different times.  To allow for this feature the physical 
system state variable equations were discretized at a 
sampling rate of 10 kHz (i.e. it updates once every 
100 µsec).  However, each node only updated its 
control signal at a rate of 2 kHz (every 500 µsec).  
Therefore, clock drift as reflected in the time at 
which a node applies its control signal, was simulated 
in increments of 100 µsec. 
 
With this in mind, the physical system simulation 
evolves as follows:  the beam model is given the 
control input for the previous time step and returns 
the sensor output for the current time step; then the 
control algorithm calculates the current control signal 
based on the appropriate sensor signals and which 
will be applied to the beam at the next time step.  As 
noted previously, although the physical system is 
poled every 100 µsec, the control inputs are only 
changed once every 500 µsec. 
 

Simulation Results 
One of the most important questions that SIESTA 
was designed to answer was the effect of network 
communication delays on control performance.  From 
a control system perspective, one would expect that 
the system would become unstable once the delay 
became sufficiently large.  However, network 
communication delays are not simple fixed delays.  
Rather, they vary considerably with distance traveled, 
network traffic volume, etc.  The effects of various 
amounts of delay are shown in Figure 6.  This figure 
shows the beam transfer function (i.e. frequency 

domain ratio of output signal to input signal) between 
the disturbance input and the 23rd sensor output.  
Included in the plot are the transfer functions without 
control and with a reach=5 control system subject to 
fixed communication delays of 10 µsec, 100 µsec and 
1000 µsec.  Initial inspection shows that the 
performance under delays is not significantly 
affected.  Although there are some differences, 
overall the reduction of the vibration amplitude 
relative to the no control case is similar.  However, 
note that the highest frequency peak under 1000 µsec 
delay is significantly larger than that for no control.  
This certainly indicates a reduction in performance 
and may indicate impending instability in the system.  
A 1000 µsec delay corresponds to 2 samples at the 
control system update rate of 2000 Hz.  Since the 
delay is per channel, reach=5 results in a maximum 
of 5000 µsec delay from the neighbor the furthest 
away. From a control system design perspective one 
would expect this to cause problems in performance.  
However, the highest frequency dynamics of the 
beam are about 200 Hz corresponding to a period of 
5000 µsec.  The delay in this case is just inside the 
highest frequency dynamics. We plan to run more 
experiments to see what effects even longer delays 
might cause. 
 
SIESTA simulations have produced other interesting 
results as well.  Although these are not detailed here, 
a summary is worthwhile.  One conclusion stemmed 
from the comparison of performance between 
decentralized controllers of varying reach.  One 
would expect that the larger the reach the better the 
performance.  At the time of writing the results did 
not support this hypothesis, however, further analysis 
is required to make a firm conclusion.   
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Figure 6 Beam transfer functions demonstrating the effects of communication delay on control performance 

 
 

Another conclusion was that the effect of inter-node 
clock drift was negligible over relatively short time 
periods.  The current version of SIESTA is limited to 
an initially synchronized state among modes.  The 
time required to run the simulation long enough for 
significant drift effects was beyond the patience of 
the investigators.  In order to investigate this further, 
future versions of the software will permit an initially 
unsynchronized state. 
 
Conclusions 
 
SIESTA has proven to be a valuable tool for 
networked embedded systems research. It serves two 
different purposes equally well. First, it provides a 
simple target platform for distributed middleware 
research. Second, it provides a realistic simulation of 
NEST systems in different application domains 
enabling the study of different distributed control 
schemes in highly distributed, resource constrained 
embedded systems. We plan to extend SIESTA to  
support other application domains. We want to add 
fault injection capabilities as well. Last, but not least, 
we shall optimize the tool to speed up the 
simulations. 
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