
Experimental Platform for Studying Distributed Embedded Control Applications
Miklos Maroti, Ken Frampton, Gabor Karsai, Stefan Bartok, Akos Ledeczi

Vanderbilt University
akos.ledeczi@vanderbilt.edu

Abstract. Networked embedded systems are highly
distributed systems with limited resources and
communication capabilities tightly coupled to
physical processes with sensors and actuators. These
constraints do not allow the deployment of existing
heavyweight middleware layers to support the
distributed control algorithms in the different
application domains of these systems. The paper
describes a simulation framework that enables the
timing accurate simulation of these systems including
the physical system, the computing nodes and the
communication network. The tool serves two distinct
purposes by 1) allowing experimentation with
different application domains and distributed control
algorithms in the presence of communication delays,
clock drift and faults and 2) providing a platform for
distributed middleware research.

Introduction

Networked Embedded Systems (NEST) constitute a
new category of systems that necessitate the
development and application of novel systems and
software engineering techniques. These systems are
tightly coupled to physical processes, and distributed
across a relatively large number of processing nodes
often having limited resources and communication
capabilities. Each node has one or more sensors and
actuators directly attached to it that interacts with the
physical process at the node's location.

As an example for a NEST application, consider the
problem of active control of aircraft interior noise.
Aircraft interior noise is a result of two primary
sources: engine noise and turbulent boundary layer
noise. Engine noise, which itself originates from
engine vibration, combustion and turbulent engine
flow, is transmitted to the aircraft cabin through the
airframe. Turbulent boundary layer noise, which
consists of stochastically varying acoustic pressures
acting over the entire aircraft exterior, enters the
cabin by being transmitted through the aircraft
fuselage [4]. In each case, there is a bottleneck in the
path by which acoustic energy enters the cabin; this is
in the fuselage panels.

Active noise control is the reduction of unwanted
sound through the use of “active” sources such as
loud speakers or vibrational excitation. Some type of
sensor, such as an accelerometer or microphone,
measures the unwanted sound. A controller is
implemented, typically via a digital signal processor,
which takes the sensor signals and uses them to
calculate an optimal control signal. This control
signal is used to drive the active source resulting in
the cancellation of the unwanted noise. In an aircraft
interior noise control application, the sensors would
be a combination of microphones to measure the
interior noise and vibration sensors to measure the
aircraft fuselage vibration.

Previous investigations [5-6] produced promising
results, having reduced the transmitted acoustic
energy by an order of magnitude. However there are
some hurdles to be overcome before a practical,
large-scale implementation can be realized. First,
while transmission control on single panels has met
with great success, the idea of configuring all
fuselage panels with the appropriate sensors and
actuators for control is rather daunting. Perhaps the
greatest hurdle in this regard is the need for
communications between the sensors, actuators and a
centralized controller. The weight of the wires alone
is enough to prohibit the application on an aircraft.
Thus, a decentralized control scheme is more
appealing wherein each panel has an independent
controller with its own set of sensors and actuators
and only communicates with neighboring controllers.

Large-scale active noise control is only one possible
application of NEST technology. Other domains
include active flow control, micro-satellite
constellations, autonomous vehicles, smart civil
structures, and cooperative robotics. The common
characteristics of these applications introduce very
specific constraints on the solution. There needs to be
a large number of resource-limited computing nodes.
Resource limitations include, for instance, limits on
CPU performance, memory size, available power,
and others. Communication between nodes is limited
in terms of bandwidth and connection topology. In
the most restrictive situation, nodes may be able to
communicate with their immediate neighbors only.

The computing nodes and communication links are
unreliable. Node failures must be detected and
application-specific reconfiguration must be
performed to compensate for the loss.

The highly distributed nature of computing in a
NEST application implies that each node should be
equipped with sophisticated middleware —a kind of
distributed operating system that provides global
services for the applications (in addition to the local
operating system that supports local resource
management). This middleware layer is a key
ingredient of NEST applications: it encapsulates
services that are reusable across a number of specific
problems, yet independent of the underlying
hardware infrastructure (which is managed by the
local OS).

The middleware is expected to support various
coordination services beyond basic communication
protocols. Coordination services range from simple
event- and time-based coordination to complex
algorithms for leader election, spanning tree
formation, protocols for distributed consensus and
mutual exclusion, distributed transactions, group
communication services, clock synchronization and
others [7]. These services go beyond the usual
capabilities provided by networking protocols.
Additionally, because of the inherent unreliability of
the nodes and communication links, aspects of fault
tolerance must also be addressed by the middleware.

Because of resource limitations, a complex,
monolithic middleware layer that contains all
services for all applications is not feasible. The
middleware layer for NEST applications needs to be
thin, application-specific and high-performance.
Developing the technology to support these
requirements is our current research focus. However,
what we quickly realized is that there is no readily
available platform to experiment with NEST
applications and middleware. Therefore, we
developed a modular configurable simulation
environment, called the Simple NEST Application
Simulator (SIESTA) that enables the experimentation
with different distributed control applications and
middleware technology.

The next section describes the architecture and
unique characteristics of SIESTA. The middleware
layer is discussed in a separate section. Finally, an
application example is detailed, the structural

damping of a vibrating beam. Preliminary results are
also presented on how message delay affects the
control quality in this particular application.

SIESTA

The Simple NEST Application Simulator (SIESTA)
provides a simple abstract platform for
experimentation with typical NEST applications such
as active vibration control. It has a modular, layered
architecture, so that the physical system simulator,
the simulator of the distributed computing platform
including the communication network, the actual
middleware layer and the control application are all
pluggable components. As illustrated in Figure 1,
component interface with each other through well-
defined, simple APIs.

NEST Hardware and

MiddlewarMiddleware

NEST Hardware and OS

Application

Physical System

API Hardware

API Middleware

API PhysSys

Figure 1: SIESTA Architecture

Because of its modular architecture and pluggable
components, SIESTA is in fact a family of
simulators. In the remainder of this paper we refer to
one specific instance of it that simulates the structural
damping of a vibrating beam. The last section of this
paper describes the application and preliminary
simulation results in detail.

Physical System Simulation
At the bottom of the architecture is the physical
system simulator. It’s API is extremely simple:

double sense(int sensor_id);
void actuate(int actuator_id, double value);

This allows a high degree of flexibility in plugging in
external physical system simulators. Even existing
third party tools can be interfaced with using a small
adaptation layer.

Figure 2: Siesta Configuration

The biggest constraint in interfacing, however, is that
SIESTA uses a synchronous model, i.e. the different
simulator modules need to work in lockstep. That’s
why the API does not contain timestamps or any
other indication of time. The SIESTA scheduler
keeps track of global time (the individual
computational node simulators keep track of their
own local time). It is the task of the scheduler to
make sure that the whole system is simulated in a
timing accurate manner.

The simulation of the vibrating beam is done using a
state-space model. It is implemented as a Java
component running in its own thread. Details will be
provided in the last section.

Hardware Component
The heart of SIESTA is the Hardware component. Its
tasks include 1) simulating the individual NEST
nodes and the local operating system by providing an
isolated environment for the application code to run
in and 2) simulating the whole network by providing
point-to-point communication capability between
neighboring nodes using dedicated communication.
The network size and topology, as well as sensor and
actuator allocation, are configurable from graphical
models.
Figure 2 shows the graphical configuration tool of
Siesta. It is based on the Generic Modeling
Environment [3]. The small window in the top right
corner shows the model of a single node. It contains a
sensor and an actuator. Each of them has a unique

identifier as a textual attribute. The network is
modeled as a two-layer hierarchy to simplify the
models. Each subsystem called Sub10 contains ten
nodes connected in a linear array. Some of the node
interfaces are exposed to the outside world via ports.
The top window called System50 shows the entire
network consisting of ten subsystems connected so
that they form a linear array with three additional
links to decrease the diameter of the network. The
basic linear topology is a good fit of the problem
since the model of the beam is one-dimensional.

The graphical models are used to automatically
generate a Java class containing all the necessary
configuration information for Siesta.

Timing Accurate Simulation
SIESTA is not a real-time simulator, in fact, it will
run orders of magnitude slower than the real system.
(It is called SIESTA for a reason.) Two reasons for
this are that it is a single processor application
simulating hundreds of NEST processors and it is
implemented in Java for simplicity and portability.
However, the single most significant contributing
factor is the requirement to simulate “logical” timing
as accurately as possible. How is this accomplished?

In SIESTA, every NEST node has its own Java
thread. An internal scheduler gives each of the nodes
an N-millisecond timeslice in a round robin fashion.
1 millisecond is the absolute minimum that can be
scheduled somewhat reliably in Java (depending on

the JVM). It is assumed that this represents only T
microseconds of real-time because the current control
applications need to run control loops in the KHz
range. To simulate the effects of clock drift on the
quality of the control, the physical system simulator
needs to be run at an even higher rate. However, if
the application code does not have anything to do in
the given timeslice, as it is the case most of the time,
the middleware engine of the given node executes a
number of “steps” (e.g. message routing operations)
between a predefined minimum and maximum
number and then the node yields the processor. This
ensures that 1) idle nodes do not waste CPU cycles 2)
the middleware always advances even if the host OS
(e.g. Windows) takes away the CPU and the timeslice
expires for the current node by the time SIESTA gets
back the control. Note that the scheduler is a
pluggable component itself. In fact, we currently
have three different schedulers available in Siesta.

Since each simulated node keeps track of its own
local time, it is fairly easy to introduce asynchronous
clocks and hence, clock drift, making
experimentation with different clock synchronization
algorithms possible. Also, communication links can
insert a configurable explicit time delay before
message delivery. This delay can depend on the
simulated hardware capabilities, network traffic, and
other factors, or include a random component. We
are planning to include fault injection capabilities to
SIESTA in the near future to allow experimentation
with different classes of faults, including different
node, link, sensor, and actuator failures.

The hardware (and local operating system) API is
also very simple:

int getNodeID();
double sense(int sensor_index);
void actuate(int actuator_index, double value);
int numberOfChannels();
void sendMessage(int channel, Object message);
Object receiveMessage(int channel);

It allows the application program and/or middleware
to access the unique id of the hardware node it is
running on and provides access to the sensor(s) and
actuator(s) connected to the current node. Notice that
it no longer the globally unique identifier of sensors
and actuators that is used by the physical system
simulator that is needed here, only a local one.
Finally, the API assumes a simple message passing
communication protocol allowing direct
communication with neighboring nodes. The number
of neighbors can also be accessed.

Middleware

The middleware layer of Siesta is a pluggable
component, which allows different middleware
frameworks to experiment with. The set of
implemented services in each of the frameworks is
not fixed either; it depends solely on the needs of the
application. Currently, we are experimenting with
two middleware technologies. The one used in our
beam experiment is based on the asynchronous input
output automata model as described in the
“Distributed Algorithms” text by Nancy Lynch [7].
The other provides an event driven environment that
is modeled after TinyOS [9]. There is extensive
literature on both middleware technologies.

I/O automaton
Using the well-developed methodology of
asynchronous I/O automaton we gain immediate
access to a wealth of published and verified
distributed algorithms. To facilitate the rapid
implementation of these algorithms we designed our
middleware engine around a core set of classes that
closely resemble the basic concepts and notions used
by the distributed algorithms community (see Figure
3).

Figure 3. I/O Automaton implementation

IOAutomata is a base class that each middleware
service needs to extend by defining member variables
to hold state information, and by adding embedded
classes to hold code fragments that describe state
transitions. There are two types of state transitions:
local (initiated by this service) and input (initiated
from outside), which correspond to classes
LocalTransition and InputTransition, respectively. A

LocalTransition is called enabled if the described
state transition is possible or desirable in the current
state of the automaton. The model has a very simple
way of composing several automata into a single
automaton by passing the “output” of one automaton
to the “input” of (perhaps several) others, where the
“output” is a list of parameters encapsulated in the
class Action. Thus the middleware component is a
single IOAutomata that is composed of several
IOAutomata implementing different services, by
merging all LocalTransitions and all
InputTransitions. A single invocation (or step) of the
IOAutomata starts by selecting an enabled
LocalTransition randomly and letting it create an
Action. Then all InputTransitions are selected and
executed whose signature matches the created
Action. Each step is executed atomically, and the
IOAutomata needs to be invoked periodically. The
ActionTemplate is a helper class that specifies the
signature of the Action a LocalTransition creates and
an InputTransition executes. An ActionTemplate has
a set of parameters some of which can be null
specifying a wildcard. This parameter list can also
include an unlimited number of wildcards at the end
of the list (tail).

For example, the Broadcast middleware service has a
SendMessage LocalTransition with the following
ActionTemplate parameter list: "send", null,
"broadcast", "message" and a tail. When creating a
specific Action, the second parameter will hold an
integer, the channel number, while the tail contains
the message. The created Action will be matched by
the Send InputTransition of the Channel IOAutomata
whose ActionTemplate parameter list is: "send", null
and a tail. The execution of this InputTransition will
cause a call to the underlying simulated hardware
channel send primitive (OS service). Similarly, the
Channel Receive LocalTransition generates an
Action that will be matched by the Broadcast
ReceiveMessage InputTransition (on the node at the
other end of the hardware channel). Notice how the
Action matching technique supports the composition
of different I/O automata. The calling graph for each
LocalTransition can be computed form the
ActionTemplates before the simulation starts.

Our representation of the basic concepts of I/O
automata might seem unnatural at first, but in fact it
is almost the only choice. For example, in an
execution environment actions cannot be classified to
input, output and internal actions, because the same
action can participate as an input action of one

automaton, an output action of another automaton,
and an internal action of the composition of the two
automata. Similarly, one cannot separate output and
internal transitions, which is why we used the term
local transitions. Moreover, after analyzing the rules
of composition, we can observe that no action can be
matched by more than one local transition. This is
why we can say that the local transition “creates” the
action, while input transitions “execute” it.

TinyOS programming model
TinyOS [9] is an event based operating environment
designed for use with embedded networked systems.
It is designed to support the concurrency intensive
operations required in such systems with minimal
hardware requirements [8]. TinyOS mandates its own
programming model on how components are written.
It presents three abstractions: events, commands and
tasks. The application is composed of a hierarchical
set of components by wiring the events and
commands to their handlers. Events represent
function calls; they are executed synchronously. It is
critical that events be as short as possible, although
their execution might involve posting tasks. Tasks
represent asynchronous, longer-running
computations. Commands are very similar to events,
except for their restriction on the calling graphs.
Commands can only call lower level commands,
while events can fire higher-level events and call
lower level commands. Events are often the result of
hardware interrupts, and they can preempt tasks.

The middleware framework developed for Siesta
does not emulate any of the hardware or system
components of TinyOS. It merely allows the
development of middleware services using the
programming and composition methodology of
TinyOS. We have the following set of core classes
(see Figure 4).

Figure 4. The implementation of the TinyOS

methodology

In our current implementation we replace all
commands with events and put no restriction on the
calling graphs of events. Component is a base class
that each middleware service needs to extend by
defining member variables to hold state information,
and by adding embedded classes to hold code
fragments that describe commands, events and tasks.
The embedded classes must be derived from Event or
Task. Signals are implemented by declaring member
variables of type Signal. Signals maintain a list of
Events that must be called when the Signal is fired by
Tasks and Events. Parameters passed between Events
and Signals are encapsulated in the class Action. The
Component maintains a list of posted Tasks that it
executes one at a time.

For example, the Broadcast middleware service has a
ReceiveMessage Event which calls the SendMessage
Signal with the following Action parameter list:
channel number and message. The SendMessage
Signal is wired to the SendMessage Event of the
Channel middleware service. The execution of this
Event will cause a call to the underlying simulated
hardware channel send primitive (OS service). On the
node at the other end of the hardware channel the
ReceiveMessage Event is executed by a simulated
hardware interrupt, which saves the message and
posts the ProcessMessage Task. When the
ProcessMessage Task executes, it calls the
DeliverMessage Signal, which is wired to the
ReceiveMessage Event of Broadcast. Notice how the
calling graphs are broken by posting Tasks and by the
simulation of the hardware layer.

Example Application

The physical system under consideration is a simply
supported beam subject to a random, point force
disturbance. The beam is also subjected to the
control inputs of each node and the response is
measured at each node by a point velocity sensor.
The beam dynamics are modeled using Galerkin's
technique to discretize the partial differential
equations. The result is a set of simultaneous
ordinary differential equations of the form:

∑
=

+++=
N

n
ndkkk tQtQtqKtq

dt
dM

1
2

2

)()()())((0

where Mk and Kk are the modal mass and stiffness, qk
is the displacement of the kth mode, Qn are the

control generalized forces and Qd is the disturbance
generalized force. In this case, the system was
configured with 50 nodes distributed evenly along the
length of the beam. For convenience in simulation,
this set of equations was cast in discrete time, state
variable form as follows [1]:

)()(
)()()(

kCxky
kBukAx1kx

=
+=+

where k is the time step, x is the state vector
containing the beam mode displacements, qk(t) and
their derivatives, u is a vector of the control and
disturbance forces, fn and fd, and y is the beam
vibration velocity at node.

Although this paper focuses on the beam system
described above, any system that can be cast in state
variable form can be incorporated into SIESTA
without any code modification. As an example, a
physical model of a launch vehicle payload fairing
has already been incorporated into one version of
SIESTA.

Control Architecture Design
The decentralized control architecture employed here
is referred to as a horizontal hierarchy. A horizontal
hierarchy is one that consists of only a single layer of
nodes that communicate only with neighboring nodes
as shown in Figure 5. The degree of information
sharing among nodes is defined by the “reach” of the
system. A node that has a reach of R will have access
to 2R+1 sensors; R sensors to the left, R sensors to
the right in addition to its own sensor. Nodes located
near the edge of the domain will simply have non-
existent sensors omitted. Each node then creates a
single control output based on the available sensor
signals. This output is used to command the actuator
associated with that node.

Each node employs a simple control law of the form

∑
+

−=

=
Rn

Rni
iin x

dt
daQ

In words, each node produces a control force that
equals the weighted sum of all available sensor
signals. The weight applied to each sensor signal, ai,
was determined from a well-established LQR,
optimal output feedback algorithm [2].

A11 A12 A13 A14 A15 A16 A17 A18

Disturbance

Vibrating
Beam

Sensors &
Actuators

Decentralized
Control

Figure 5 Schematic of the decentralized control architecture

Physical System Simulation
In order to allow SIESTA to simulate clock drift
among nodes, it was necessary to permit different
nodes to send their control signals to the beam at
different times. To allow for this feature the physical
system state variable equations were discretized at a
sampling rate of 10 kHz (i.e. it updates once every
100 µsec). However, each node only updated its
control signal at a rate of 2 kHz (every 500 µsec).
Therefore, clock drift as reflected in the time at
which a node applies its control signal, was simulated
in increments of 100 µsec.

With this in mind, the physical system simulation
evolves as follows: the beam model is given the
control input for the previous time step and returns
the sensor output for the current time step; then the
control algorithm calculates the current control signal
based on the appropriate sensor signals and which
will be applied to the beam at the next time step. As
noted previously, although the physical system is
poled every 100 µsec, the control inputs are only
changed once every 500 µsec.

Simulation Results
One of the most important questions that SIESTA
was designed to answer was the effect of network
communication delays on control performance. From
a control system perspective, one would expect that
the system would become unstable once the delay
became sufficiently large. However, network
communication delays are not simple fixed delays.
Rather, they vary considerably with distance traveled,
network traffic volume, etc. The effects of various
amounts of delay are shown in Figure 6. This figure
shows the beam transfer function (i.e. frequency

domain ratio of output signal to input signal) between
the disturbance input and the 23rd sensor output.
Included in the plot are the transfer functions without
control and with a reach=5 control system subject to
fixed communication delays of 10 µsec, 100 µsec and
1000 µsec. Initial inspection shows that the
performance under delays is not significantly
affected. Although there are some differences,
overall the reduction of the vibration amplitude
relative to the no control case is similar. However,
note that the highest frequency peak under 1000 µsec
delay is significantly larger than that for no control.
This certainly indicates a reduction in performance
and may indicate impending instability in the system.
A 1000 µsec delay corresponds to 2 samples at the
control system update rate of 2000 Hz. Since the
delay is per channel, reach=5 results in a maximum
of 5000 µsec delay from the neighbor the furthest
away. From a control system design perspective one
would expect this to cause problems in performance.
However, the highest frequency dynamics of the
beam are about 200 Hz corresponding to a period of
5000 µsec. The delay in this case is just inside the
highest frequency dynamics. We plan to run more
experiments to see what effects even longer delays
might cause.

SIESTA simulations have produced other interesting
results as well. Although these are not detailed here,
a summary is worthwhile. One conclusion stemmed
from the comparison of performance between
decentralized controllers of varying reach. One
would expect that the larger the reach the better the
performance. At the time of writing the results did
not support this hypothesis, however, further analysis
is required to make a firm conclusion.

10-1

Frequency, Hz

Se
ns

or
 2

3
O

ut
pu

t
Delay=10
Delay=100
Delay=1000
No feedback

Figure 6 Beam transfer functions demonstrating the effects of communication delay on control performance

Another conclusion was that the effect of inter-node
clock drift was negligible over relatively short time
periods. The current version of SIESTA is limited to
an initially synchronized state among modes. The
time required to run the simulation long enough for
significant drift effects was beyond the patience of
the investigators. In order to investigate this further,
future versions of the software will permit an initially
unsynchronized state.

Conclusions

SIESTA has proven to be a valuable tool for
networked embedded systems research. It serves two
different purposes equally well. First, it provides a
simple target platform for distributed middleware
research. Second, it provides a realistic simulation of
NEST systems in different application domains
enabling the study of different distributed control
schemes in highly distributed, resource constrained
embedded systems. We plan to extend SIESTA to
support other application domains. We want to add
fault injection capabilities as well. Last, but not least,
we shall optimize the tool to speed up the
simulations.

Acknowledgement

The DARPA/ITO NEST program (F33615-01-C-
1903) has supported, in part, the activities described
in this paper.

References
[1] Clark, R., Saunders, W., and Gibbs, G Adaptive
Structures: Dynamics and Controls, John Wiley &
Sons, New York, New York, 1998.
[2] Levine, W. and Athans, M. “On the
Determination of the Optimal Constant Output
Feedback Gains for Linear Multivariable Systems,”
IEEE Transactions on Automatic Controls, Vol. AC-
15, No. 1, 1970, pp 44-48.
[3] Ledeczi, A. et al. “Composing Domain-Specific
Design Environments,” Computer, pp. 44-51,
November, 2001.
[4] 11. Frampton, K. D. and R. L. Clark, “Control of
Sound Transmission through a Convected Fluid
Loaded Plate with Piezoelectric Sensoriactuators,”
Journal of Intelligent Materials Systems and
Structures, Vol. 8, No. 8, pp. 686-696, August 1997.
[5] Frampton, K. D. and R. L. Clark, “Improved
Control of TBL Pressure Transmission through
Aeroelastic Plates with LQG Compensation,”
presented at the 39th Structures, Structural
Dynamics, and Materials Conference, Adaptive
Structures Forum, Long Beach, CA, April 1998.
[6] Henry, J and R. L. Clark, “Active Control of
Sound Transmission Through a Curved Panel into a
Cylindrical Enclosure” to appear in the Journal of
Sound and Vibration
[7] Lynch, N. A. Distributed Algorithms, Morgan
Kaufmann Publishers, 1996
[8] Hill, J. et al. “System Architecture Directions for
Networked Sensors,” Proceedings of ASPLOS, 2000
[9] http://webs.cs.berkeley.edu/tos

http://webs.cs.berkeley.edu/tos

	Introduction
	SIESTA
	Physical System Simulation
	Hardware Component
	Timing Accurate Simulation

	Middleware
	I/O automaton
	TinyOS programming model

	Example Application
	Control Architecture Design
	Physical System Simulation
	Simulation Results

	Conclusions
	Acknowledgement
	References

